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The static formulation of the problem of the wedging of brittle or 
quasi-brittle bodies by a rigid semi-infinite wedge, which corresponds 
to the case when the wedge velocity in the body is small compared with 
the velocity of propagation of transverse oscillations, has been studied 
in [1,21. In dynamic form, which applies when the wedge velocity is 
comparable with this propagation velocity. the problem has been investi- 
gated in [31. In both cases one of the main assumptions made is that 
the wedging is steady, i.e. as the wedge moves through the body with a 
constant velocity V, the leading edge of the crack formed in front of 
the wedge also moves uniformly at the same velocity V (Fig. 1). 

Experimental investigations have shown, however, that the growth of 
a crack at low velocity does not take place uniformly (see [Sl); the 
velocity of the tip of the crack performs regular oscillations about 
some mean value. At the same time the surface of the crack assumes a 
wave form. On the other hand. it happens that at a sufficiently high 
velocity of propagation the leading edge of the crack moves at a con- 
stant velocity and the surface of the crack becomes mirror-smooth. 

In this connection the experiments in wedging carried out by Gilman, 

Knudsen and Walsh c51, and especially those by Kosevich ISI, are very 

informative. These investigators found that at a sufficiently low wedg- 
ing velocity the assumption that the velocity of the leading edge of 
the crack is constant is invalid. Oilman. Knudsen and Walsh discovered 
that at a sufficiently low wedging velocity in a crystal of lithium 

fluoride the leading edge of the crack moves in a series of jerks. 

Kosevich discovered that when crystals of bismuth are split slowly 
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along a plane of cleavage, the crack assumes au undulating surface, the 
undulations being symmetrical about the plane of the crack. The direc- 
tion of the lines of the ridges has no definite crystallographic 
orientation but is always perpendicular to the direction of propagation 
of the crack. In addition, the velocity of the tip of the crack performs 
periodic oscillations about a mean value equal to the velocity of the 
wedge. This phenomenon is no longer observed when the velocity of the 
wedge increases to some critical value which is considerably less than 
the velocity of propagation of transverse oscillations. 

Measurement of the distribution of the dislocation density on the 
surface of the split revealed the periodfcity of this distribution, and 
it was found that the maxima of the dislocation density corresponded to 
the peaks of the ridges on the surface of the split. In [5,61 it has 
been stated that the non-uniform development of a crack can be explained 
by alternate brittle fracture and plastic deformation during the process 
of crack propagation. 

In the present paper we shall expound the theory of a self-oscilla- 
tory process which occurs during wedging. The explanation of the 
phenomenon is based on the assumption that the cohesion modulus - the 
main characteristic of the forces acting at the tip of the crack [71 - 
depends on the instantaneous velocity of the tip of the crack, and 
initially decreases with increase in this velocity. The reduction in 
the cohesion modulus with increase in the velocity of crack propagation 
is typical of the quasi-brittle fracture of a great many materials and 
is associated with the decrease in inelastic strain in the layer 

adjacent to the surface of the crack. 

In accordance with experimental data we can assume that the range of 

wedging velocities over which self-oscillation takes place is limited - 
at any rate for bodies of sensible dimensions - to velocities consider- 
ably less than the velocity of propagation of transverse oscillations. 

1. Statement of the problem and the basic equation. 1. 
Suppose that a very large ideally elastic body is split under condi- 

tions of plane deformation (Fig. 1) by a rigid symmetrical wedge moving 

at a constant velocity V much less than the velocity of propagation of 

transverse oscillations c. Friction forces acting on the sides of the 

wedge will be ignored. Assume that the thickness of the wedge increases 

monotonically to a maximumSvalue of 2h. The axes of a moving system of 

Cartesian coordinates with origin at the tip of the crack will be de- 

noted by c, TJ; those of a fixed system of coordinates will be denoted 

by x, y. The x and c axes lie in the direction opposite to the motion 

of the wedge. The instantaneous length of the free crack in front of 

the wedge will be denoted by 1. Then, obviously, 
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where v(t) is the instantaneous velocity of 

the tip of the crack and t is the time. 

lbe proposed explanation of the self- Fig. 1. 
oscillatory phenomena observed when a solid 

body is split, is based upon the assumption that fracture is quasi- 

brittle. ‘lhis means that during fracture a thin layer of inelastic de- 

formation is formed next to the surface of the crack. 

As the crack propagates a given point on the surface of the crack is 

subjected to intense forces as the tip of the crack passes. ‘lbe degree 

of inelastic deformation at this point increases with increase in 

intensity and duration of these forces. With increase in velocity the 

duration of these forces decreases. In the case of low velocities, when 

viscous effects are insignificant, the load intensity remains approxi- 

mately constant. At high velocities, when viscous effects become con- 

siderable, the load increases. Therefore, as the velocity v of the tip 

of the crack increases the extent of inelastic deformation falls at 

first, and then, evidently, increases. 

As a measure of the inelastic deformation it is customary to take 

the basic integral characteristic of the forces acting,in the end region 

of the crack, i.e. the cohesion modulus K (see, for example [?I ) . In the 

case of quasi-brittle fracture the surface of the crack is taken as the 

boundary between the elastic and inelastic regions. lhe forces exerted 

on the elastic body by the discarded region of inelastic deformation are 

external forces.with respect to the elastic body. ‘lherefore, the cohesion 

modulus K increases with increase in inelastic deformation. Bearing in 

mind what we have said concerning the variation in inelastic deformation 

with increase in velocity, we assume* that the cohesion modulus at first 

decreases (until v = v ) and then increases (Fig. 2). ‘Ihe critical velo- 

city can be both much less than and comparable with the velocity of 

sound. 

An analogous relation can be obtained between the velocity v and the 

l The assumption that the cohesion modulus (or the density of surface 
energy) depends on the velocity of the tip. of the crack has been 

expressed in the context of other problems in a paper by Stroh [81 
and, independently, by V.A. Maksimov. 
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density of the surface energy T, which is related to the cohesion 

modulus K by the expression (see, for example, [71) 

I 
0 v, V 

Fig. 2. 

illustration of the close 
crack formation. 

where E is Young’s modulus and v is Poisson’s 
ratio for the material penetrated by the 
wedge. There is a characteristic similarity 
in the relations between cohesion modulus and 
time and those between coefficient of Coulomb 
friction and time; this similarity is one 
analogy between the processes of friction and 

The velocity v of the tip of the crack can be expressed in the form 

o=v+g (I.31 

We recall also that in the case of steady splitting of a body by a 
rigid smooth slow-moving wedge of constant thickness the length 1 of 
the free crack is defined by the static expression 121 

T(v) = (’ 
- 9) K, (0) 

nE (i-2) 

2. To derive the basic equation defining the relation between the 
length of the free crack and time we start from the law of conservation 
of energy, which for the present problem can be written in the form 

$+ f =FV---2T(u)v (1.5) 

where 8 is the kinetic energy of the body, ll its potential energy and 
F the absolute magnitude of the splitting force exerted by the wedge on 
the body and directed, obviously, along the axis of the wedge in the 
direction of motion. The quantity FV represents the work done by the 
external forces acting on the body over unit time; the quantity 2T(u)v 
is the change in the surface energy of the body over unit time. 

Now imagine an auxiliary motion which differs from the true motion 
in that the instantaneous velocity of the tip of the crack is zero and 
the wedge moves in such a way that at any instant of time the quanti- 
ties 1, 1 and 1 are the same for both motions. The corresponding equa- 
tion of conservation of energy is 

z+?!$_Ff (1.6) 
where 8’, TT’ and F’ are, respectively, the kinetic and potential 
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energies and the wedging force for the auxiliary motion. Since the 

velocity of the wedge is small as compared with the velocity of sound, 
we can accept the approximation that the quantities dTi’/dt and F' are 
fully defined by the geometry of the motion, in this case by the 
quantities 1, i, .,., which are the same for both motions. Thus F’ = F, 
dTl’dt = d!l/dt, so that hy subtracting (1.6) from (1.5) we obtain 

d(;BdTX [F-2T(v)]v @*7) 

Let us now assess the order of the terms appearing in this equation. 
The elastic displacements of points in the body are evidently of the 
order of h and the strains of the order of h/l. lhen the force F is of 
the order of the product of the normal stress on the sides of the wedge 
(- ~h/~) and the width of the wedge (" h), so that F-Eh2/2. ‘Ihe 
quantity 7' is of the same order (cf. (1.4) and (1.2)). lhe particle 
velocities in the body are of the order of h/r, where -r is the charac- 
teristic time of the process and T or Z/V, so that the particle velocity 
is of the order of Vh/l. 'Ihus the rate of change in kinetic energy is 
of the order of 

i.e. of the order of the terms on the right hand side of equation (1.7) 

multiplied by V2/c2. 

This means that equation (1.7) contains a small parameter, so that 
with our assumption that V/c << 1, the term on the left-hand side of 
this equation is a small difference of large numbers. For the present 
approximation, therefore, we must consider only those terms with a small 
parameter*.which contain the highest derivatives (in this case the 
quantity t). 

If, in particular, we assume that the dynamic part of the wedging 
force F is approximately independent of the acceleration of the tip of 
the crack, we find that the quantity F in equation (1.7) can be evalu- 
ated by means of a static solution. Bearing in mind that we have assumed 
the dimensions of the body to be very large (compared with the length 
of the free crack), the wedging force can be evaluated by means of a 
static solution for an infinite body, from the formula [31 

where oY is the normal stress exerted by the wedge on the surface of 
the crack and f,(x) is a function which defines the shape of the wedge. 
We shall calculate the value of the wedging force F for the more general 
case of a semi-infinite section along the positive semi-axis loaded on 
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the surface by a symmetrical normal stress (I = - g(x) distributed 

according to some law. We assume that the a&lied normal stress is such 

that the normal displacement of points on the surface of the section 
f,(x) increases monotonically with increase in n. We have 

(For the expression for f,'(n) see, for example, [?I.) From this 

lhus we obtain 

F z 
2n(i-vqw 

E t N 

where N is the coefficient of stress intensity (71. It has been estab- 
lished that for equilibrium cracks N = 0, so that at the tip of the 
crack the stresses are finite and the closure of the edges of the crack 
is 
is 
to 

smooth. The condition for this is, of course, that the wedging force 
zero. Note that the wedging force in this case is the "force needed 
widen the crack" as proposed by Irwin [9]. 

lhe system of forces exerted by the wedge on the elastic body, and 
consequently, its resultant F, are independent of the forces acting in 
the end region and influencing the elastic field only in the immediate 
neighborhood of the tip of the crack. Therefore, in calculating F the 
quantity N should be taken equal to No - the coefficient of stress in- 
tensity evaluated without taking into account cohesion forces. In the 
particular case of a sufficiently long wedge of constant thickness we 
can make use of the solution for a semi-infinite wedge in an infinite 
body, which gives: 

F = Eha 
23% (1 -lq 1 (t) 

3. In order to evaluate the left-hand side of equation (1.71, as a 
result of our assumption that the wedging velocity is small compared 
with the velocity of propagation of transverse oscillations, we can 
adopt the static solution. This gives an expression for the displacement 
in a moving system of coordinates: 
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U= (uzc, G = u (%P rll z (4) 

In the fixed system of coordinates xy attached to the body under- 

going wedging, the velocity in the quasi-static approximation, by virtue 

of (l.l), is 

du 
s=x (14 

Also, the rate of change of kinetic energy is given by the expres- 

sion 

d# 
-=-pSqido, I+$ dt 

a 
(1.9) 

where the integration is taken through the whole volume Q of the body. 

In evaluating the integral on the right-hand side of (1.9) we can, as 

before, in view of the assumption that V/c << 1, ignore terms which do 
not contain the highest derivative 1. We then obtain 

ds - = ibid+ iv,ii 
dt 

Rtting v = 0 in (l..lO), we obtain an expression for d8' /dt; sub- 

tracting this from (l.lO), we find that 

(1.11) 

'l%us the determination of the left-hand side of equation (1.7) has 

been reduced to the evaluatiod of the "attached mass" M of the crack. 

Analysis shows that the attached mass, calculated from the static solu- 

tion of the problem of the splitting of an infinite body by a semi- 

infinite wedge, is infinitely large. It is well-known that a similar 

difficulty exists in the determination of the attached masses of travel- 

ling dislocations (see, for example, the recent study by Weertman [lo]). 

It is related to the specific nature of the plane stationary problem in 

the theory of elasticity and is obviated by the introduction of an ex- 

ternal dimension of the body L. In the case under investigation, when 

the external dimension L of the body undergoing wedging is much greater 

than the length of the free crack 2, there exists for the attached mass 

M an asymptotic expression in Z/L: 

M = plz' 
[ 

A In -+ + B + o (i)] (1.12) 
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The coefficient A can be calculated from the solution to the static 
problem of the splitting of an infinite body by a semi-infinite wedge. 

Assuming for simplicity that the wedge is of constant thickness, and 

employing the method of Muskhelishvili, we obtain the following expres- 

sion for the displacement components uX and u : 
Y 

2 = E + irl, x=s-4v 

cp’ (2) = * 
Jf/' 

cp (0) = 0, lim ___ 
*_&-_) = --1 

(1.13) 

where the constant u,, (which may depend on the length of the crack and, 

consequently, on time) is chosen so that the asymptotic solution (1.13) 

satisfies the condition that the velocity q vanishes at infinity. Taking 

into account (1.8), we obtain 

uo (t) = - ii,I-"t,ln 1 (t) + const (1.14) 

where the constant is independent of time. The principal (logarithmic) 

term in the expression for M, i.e. the constant A, can be found by ex- 

panding the expression under the integral sign in the neighborhood of a 

point of infinity: 

A = -$;;t_5,, (1.15) 

Assuming that the free crack is approximately equidistant from the 

boundaries of the body, we can also find the constant B from the asymp- 
totic solution (1.13), carrying out the integration in (1.10) around 

circles with center at the tip of the crack. 

This gives 

B = A In 7, r = e=p [2;5, + (2 In 2) $$I (4.16) 

Substituting this expression into (1.12) and neglecting small quanti- 

ties o (l), we obtain an expression for the attached mass of the crack 

in the form 

M = mph2, x2 + 5 

m = 161~ (I- v)a 
lIl@ 

1 

Substituting the expressions found for the quantities F and 
d( B - b' )/dt into (1.7), expressing T in terms of the cohesion modulus 
according to formula (1.2) and cancelling the comnon factor u, we obtain 

the basic equation for determining Z(t) in the form: 
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4. If we introduce the force of inertia of the crack a!l/dt applied 

at the tip in such a way that the work done by this force is equal to 

the decrement in I - 8’ , i.e. 

d (rS- 8’) dl El dZ 
dt 

=-v-& or - mph@ = zt 

then equation (1.17) can be looked upon as a force equa1it.v: 

dI 
-=F--_, 
dt 

R = 2T 

(1.18) 

(i.49) 

where R = ZT is the force resisting wedging, acting at the tip of the 

crack in the opposite direction to the travel of the crack. 

lhus in a state of equilibrium or steady splitting the wedging force 

F is balanced by the resistance R, from which formula (1.4) can be de- 

rived. In the case of non-steady splitting the wedging force F is not 

balanced by the resistance R, since as a result of the inertia of the 

body the length Z(t) of the free crack has insufficient time to adapt 

itself to the cohesion modulus corresponding to the instantaneous velo- 

city of the tip of the crack u(t). 

2. Investigation of the basic equation. 1. Taking v = V+ 

dl./dt as the independent variable, and 1 as the dependent, we reduce 

equation (1.17) to the form 

dl 
d;= A 

(0 - V)Z 
- BiK’ (v) 

E$ A =2n(1 
E 

- v’)mp ’ 
R = w- +) 

nmpfth’ (2.9 

Now during wedging the length 1 of the free crack varies only 

slightly (certainly insufficiently to affect the order) and therefore, 

since the assumption is that L/l is large and since it appears under 

the logarithm sign, the quantity R can be assumed to be constant. 

We need consider the integral curves of equation (2.1) only in the 

first quadrant of the plane ~2, since only the segnents of the integral 

curves within this quadrant have any physical meaning. lhe length of 
the free crack in front of the wedge canuot be negative, and by virtue 
of the irreversibility of the crack the velocity of its tip v cannot be 

negative either . 

Investigation shows that in the first quadrant equation (2.1) has 

only one singular point: 
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v =v, I = I, (V) - 
Dha 

4(1 - VS)’ IP (V) (2.2) 

which corresponds to steady quasi-static wedging, when the wedge has a 

velocity V and the length of the crack in front of the wedgeremains con- 
stant. An investigation of the nature of the singular point shows that 

it is a focal point or node, unstable when 

K’(V)<0 (2.3) 

and stable when K’(V) > 0. 

Consequently, since the function K(V) decays in the neighborhood of 

V = 0 (Fig. 2), there always exists a region of unstable steady wedging 
0 < v< II*, where v* is given by the equation 

K'(v*) = 0 (24 

It is clear that if the curve K(v) has no increasing portion within 

the range of velocities under consideration, then the region of unstable 

steady wedging extends at least over all 

velocities admitting a quasi-static treat- 

ment. 

Consider the non-steady motion which 

occurs at a wedge velocity V which lies 
within the region of instability. 

Figure 3 shows the isoclines dZ/dv = 0 
and dl/dv = 0~ for the case of instability 
of the singular point, together with the 

directions of motion of the mapping point 

along the integral curves. 

For a complete description of the 

motions which occur, it is necessary to 

establish what happens to the mapping Fig. 3. 

point near the boundaries of the first 

quadrant. If the mapping point is located near the line v = 0, it 

reaches this line when 1 > Z*(O) and leaves it in the first quadrant 

when 2 < Z*(O). It follows from the irreversibility of the crack that 

in the former case the mapping point moves downwards along the line 

v = 0 with velocity V (the tip of the crack is stationary and the wedge 
is moving) until it reaches the point M{IJ = 0, I = I*(O)}, after which 

it starts to travel along the integral curve starting from this point. 

'Ihe boundary 1 = 0 is the.only integral curve along which the mapping 
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point can pass to infinity. Therefore the integral curves cannot leave 

the first quadrant through the boundary 1 = 0; on the other hand it is 
not difficult to see that motion along the integral curve 1 = 0 is un- 
stable. 

l’he mapping point leaving it within the first quadrant starts to 

move around the singular point, tending towards it or the limit cycle 
surrounding it t if such a cycle exists. 

We can show that in the case of instability of the singular point, 

i.e. of “self-induced” oscillations, there is always at least one stable 

limit cycle. 

The integral curve which leaves the point M can have one of two forms 

denoted in Fig. 3 by the numbers I and II. Note that this integral curve 

can intersect the isocline dl/dv = m both to the right and to the left 
of the maximum. The latter is obviously the case for low wedging velo- 

cities and small slopes of the curve K(v). If the integral curve leav- 

ing the point M is of the form I, then the limit cycle is a line con- 

sisting of a segment of this integral curve from the point M to the next 
point of intersection between it and the axis of ordinates, v = 0, 
1 = I, with the closing segment the axis of ordinates u = 0, Z*(O) \r 
1 < I,. 

This limit cycle is always stable, independently of whether the 
singular point is stable or unstable. 

This can readily be confirmed for points within the region which is 
internal with respect to the limit cycle by extending the segment of 
the boundary integral curve into this region from the point M. The inte- 
gral curve extended in this way can either approach the singular point 
in a spiral (in the unstable case) or wind itself onto some inner limit 
cycle. An integral curve passing through any point in the internal 
region which is outside the second limit cycle, if such exists, must 
reach the axis of ordinates at some internal point of the closing seg- 
ment v = 0, Z$(O) B 1 Q 11, and in so doing end up on the limit cycle. 
With respect to points in the outer region the stability of the limit 
cycle derives from the fact that the integral curve passing through 

every such point reaches the axis of ordinates above the point 1 = 11 
after which, as has already been pointed out, it falls with velocity V 
to the point v = 0. 1 = II and ends up on the limit cycle. Note that in 
all cases the mapping point reaches the limit cycle over a finite inter- 

val of time. 

If the integral curve starting from the point M is of the form II, 

then the existence of at least one absolutely stable limit cycle 

follows from the instability of the singular point [llI . 
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Case I corresponds to oscillations with intervals when the tip of 
the crack is stationary (Fig. 4~) and the case II corresponds to 
oscillations without these stationary intervals (Fig. 4b). 

2. For the system (2.1) we 
a have 

-(; +q$ = BP(v) 

Fig. 4. lhis expression does not 
vanish when v < v t’ 

From the criterion of Bendixson LllI it follows that if the limit 
cycle is situated to the left of the line v = v*, then it corresponds 
to oscillations with intervals when the tip of the crack is stationary. 

Thus it has been shown that for V > v* (if the critical velocity v+ 
exists) steady wedging is stable with respect to small disturbances. 
For V < v* steady wedging is unstable and there exists a self-oscilla- 
tory regime of crack propagation. In the general case one is limited to 
conclusions of a qualitative nature; in order to calculate the self- 
oscillatory motions induced it is necessary to integrate equation (1.17) 
numerically with the function K(v) specified in some definite way. ‘Ihe 
limit cycle is found by integration as a closed curve C in the plane of 
VI. lhe period of the oscillations is given by the formula 

fj= dl $ 
C 

v (1) -v (2.5) 

The wavelength h - the path travelled by the tip of the crack during 
one cycle - is given by the expression 

e 

h = s v (z) dz = ve 
0 

(2.6) 

In practice the wavelength can be found, for example, as the dis- 
tance between two neighboring ridges in the plane of the split. 

It can be shown that the limit cycle corresponding to a certain 
value of the wedging velocity V includes all limit cycles corresponding 
to smaller values of V. ‘Ihus the amplitude of the oscillations of the 
length of the free crack increases with increase in the velocity of the 
wedge. 

3. Limiting cases. Discussion of results. 1. Let us write 

equation (1.17) in non-dimensional form. We set 
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where u1 is the characteristic velocity, which it is convenient to de- 

termine in different ways for different cases. ‘lhe equation then becomes 

(3.2) 

It has already been shown that the relation I{(v) is analogous to the 

relation between the coefficient of Coulomb friction and the relative 

velocity of oscillating surfaces. In the theory based on this assump- 

tion for self-oscillations in the presence of Coulomb friction developed 

by pupils of Mandel’shtam and Papaleksi, there are two important cases 

for which the investigation can be carried through to completion. In 

the first case the coefficient of friction depends very much on velocity, 

and if the inertia of the vibrating body is small enough, then the phase 
plane is divided into a region of “rapid” motions and a region of “glow” 

motions. If we replace the rapid motions by jumps, we need not in 

general take inertia into account. ‘lhis case of discontinuous relaxa- 

tional vibrations has been studied by Khaikin and Kaidanovskii [121. In 

the second case the coefficient of friction depends very little on velo- 

city and inertia must be taken into account. This case has been investi- 
gated by Strelkov [13]. Similar possibilities arise in the problem of 

self-oscillations during wedging. Consider the first of these - the case 

when the cohesion modulus I{ depends strongly on the velocity v. Putting 

Ul 
= V in (3.1) and transferring in equation (3.3) to the phase plane 

WA we obtain 

dh 
;i;;= 

U(W--1)A 
1 - f (w) A ’ 

a=n(l (3.3) 

‘Ihe parameter a, which is a measure of the inertia of the process, 

was at the outset assuned to be small. We see from (3.3) that when a is 

Fig. 5. 

small the quantity dA/rlw differs appreci- 

ably from zero only in a narrow strip sur- 

rounding the isocline dA/dw = 0~; elsewhere 

in the WA plane dA/dw is approximately 

zero for small values of a. Therefore, in 
accordance with the general results of the 

“boundary-layer” theory - the theory of 
equations with a small parameter in front 

of the highest derivative (see [HI, 

Chapter 10) - we find that when the curve 

f(w) has a maximum (W = w*) the phase 
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diagram of Fig. 3 in the limit as a - 0 assumes the form shown in Fig.5. 

On the basis of the general method outlined in Section 4 of Chapter 
10 of [l.ll we obtain the following results. Slow motions occur in the 
region l/h - fl < O(~,,CX~/~), where w0 > 0 is defined by the equation 
f(wO) = 1. In th e remaining part of the phase plane the motions are 

rapid. when w > w*, the mapping point enters the region of slow motion, 

remains in this region, and in the limit moves in accordance with the 
equation 

When w < w+, the mapping point leaves the 
enters the region of rapid variation in w at 
of A. 

(3.4) 

region of slow motions and 
an almost constant value 

Consider the integral curve which starts from the point M. If 

(the wedge velocity is not very high), then this curve will enter the 
region of rapid motions. Remaining approximately horizontal, it reaches 
the isocline dA/dw = m at the point (zuO, 1) and then travels along this 
isocline in the region of slow motions until it reaches the point w = w*, 
A = A*. 

If 

w* - 1 > 0 (Wo’W’~’ I F(llf)Z 

(the wedge velocity is not too close to v ) then the curve, after leav- 
ing the point M, enters the regions of rasid motions close to this 
point and, remaining almost horizontal, travels to the point w = 0, 
A = A*, thus describing a curve of the type I. 

Consequently, if the above inequalities are satisfied, which, taking 

into account (3.1), can he reduced to the condition 

J%<V<& (3.5) 

where VI and V2 tend, respectively, to zero and v* with increase in 
h”(0) and hl”fv*), then there exists a discontinuous limit cycle which 
is stable and unique. It consists of a curve of the type I as just de- 
scribed with a closing segment formed by the axis of ordinates, along 
which, as before, the non-dimensional velocity is equal to dA/dT =: 1. 
The way in which the velocity v of the tip of the crack varies with 



670 G.I. Barenblatt and R.L. Salganik 

time t is shown in Fig. 6. 

In the zero-th approximation the period of the resulting discontinu- 

ous relaxational oscillations is the sum of the times taken by the 
mapping point to travel the non-horizontal 

portions of the limit cycle, and is deter- Y 
mined by integrating equation (3.4). If 4 ---- ---- 
the range of wedging velocities admitted 

by the inequalities (3.5) is so wide that p, -- - - 

V can assume values which are small as 

compared with v , then for such values of o LEYN 
V the contributfon to the period from the t 
curvilinear portion of the limiting cycle Fig. 6. 
can be ignored. ‘Ihe wavelength A of the 
oscillations then ceases to depend on velocity, and becomes simply the 

distance between the lengths of the free crack corresponding to the 

minimum and initial cohesion moduli 

h = Fa (0) - KP (Gl BW 
4 (I- vB)%K’ (0) KS (vt) (3.6) 

If over the whole interval 0 < V < u* the inequalities (3.5) are not 

satisfied (this may be the case for sufficiently small values of K’(0) 

and K” (V )), then the concept of relaxational oscillations becomes un- 

suitable &d inertia must be taken into account. We shall not investi- 

gate this case fully here; we shall confine our attention to the case 

of sufficiently small values of V for which the left-hand part of the 

inequality (3.5) is not satisfied. 

In this case it is not convenient to take u1 = V, and we shall there- 

fore consider v1 to be some fixed velocity, for instance, a certain 

fraction of the velocity of sound c. 

When W = V/u1 - 0 the singular point is either an unstable node 

(when 4o < [f’(O)1 2), or an unstable focus (when 4~ > Tf’(0)12). 

If the singular point is a node, then there can be no inner limit 

cycles, however small the value of I, since otherwise they would inter- 

sect some trajectory starting from the node. Therefore the trajectory, 

starting from the point M, is of the form I and, together with the 
closing segment of the axis of ordinates, forms a unique limit cycle 
which is stable and corresponds to oscillations with pauses. ‘lhe size 

of this limit cycle does not tend to zero together with H’. This is due 

to the fact that in the case of a node, when .a: - 0 and v << c, the 
limit cycle tends to the discontinuous limit cycle consiLred in the 

last item, the shape of which is independent of W. 
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If the singular point is a focus, then for sufficiently small values 

of W the trajectory starting from the point h! makes its first half- 
turns in the region where equation (3.2) is approximately linear, and 

with the closing segment of the axis of ordinates forms a limit cycle 

of the same type as in the case of a node. Other limit cycles (neces- 

sarily inner) can be situated only inside this limit cycle, which, 

however, is impossible since there equation (3.2) is almost linear. 

Obviously, in the case of a focus the dimensions of the limit cycle 

tend to zero together with Y. 

The fact that equation (3.2) is approximately linear in the region 

where the limit cycle is located enables us to find this cycle, and in 

particular, to determine the wavelength. After linearization equation 

(3.2) becomes 

aE+p(0)dS +8 - 
d%= zi -- f’(O)W , 8=A--1 (3.7) 

Its solution, which corresponds to a trajectory starting from the 

point M(6 = 0, d6/d7 = - W when T = 0), in the case of a focus (4~ > 
[f'(O)]') is of the form 

6(r)=--W{P [2clncoscvc+ *-y sinoz ]-2an) 

2an = -f'(O), 2ao = v4a - [f'(O)]" (3.8) 

lhe time tl taken by the mapping point to travel along the curvi- 

linear portion of the limit cycle can be found from the condition that 

it reaches the axis of ordinates, i.e. dS/dT = - I!'. 

From this, taking into account (3.8) we obtain 

Equation (3.9) has an infinite number of solutions, from which, 

obviously, we must select the smallest positive solution. 

Thus the wavelength of the oscillations. is 

h = vtvt, -t- I (tJ - I, (0) (3.10) 

where tl and Z(t,) are given by formulas (3.8) and (3.9). 

'lhe results obtained enable us to explain the occurrence of self- 

oscillations during the wedging of brittle bodies, both crystalline and 

amorphous in which the relation K(u) exists. At present very little is 

known about this relation. Even if it is established by experiment that 
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the wedging of certain crystals is stable at high velocities, we cannot 

conclude that the crystals have a critical velocity u* or that these 

high velocities exceed v*. It was pointed out above that with increase 
in the wedge velocity the amplitude of the oscillations in the length 

of the free crack increases. Therefore, a smooth surface of the crack, 

which was taken to be a sign that the wedging was stable, could result 

not because the wedging velocity exceeded v*, but because the amplitude 

of the oscillations in the length of the free crack exceeded the dimen- 

sions of the crystal, so that over the length of the crystal non-uni- 

formity in the motion of the tip of the crack would not be noticeable. 

Kosevich found that as the wedge velocity was increased, the wavelength 

grew until finally the surface of the crack became smooth. For crystals 

a weak rather than a strong relation K(v) is to be expected. On the 

other hand, for materials such as amorphous polymers this relation would 

appear to be strong, and if these materials have a pronounced viscosity 

it would seem that their critical velocity v* is not high. It is with 

such materials that there are most likely to occur discontinuous re- 

laxational oscillations with pauses in the motion of the tip of the 

crack, which are characteristic of a strong relation K(v) which has a 

minimum. 

Oscillations with pauses in the motion of the tip of the crack (re- 

laxational and non-relaxational) evidently have a principal value. It 

could be that as a result of hardening the value of K depends on the 

duration of the pause. Here again there is an analogy with friction: 

the coefficient of friction can depend on the duration of contact of 

vibrating surfaces. l’he corresponding theory has been developed in a 

paper by Ishlinskii and Kragel’skii. 
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